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Birth defects are the leading cause of infant 
mortality in the United States (Petrini et al. 
2002), and more than 65% are of unknown 
origin (Bale et al. 2003). Neural tube defects 
(NTDs), one of the most common groups of 
birth defects, are complex malformations of 
the central nervous system that result from 
failure of neural tube closure (Christianson 
et al. 2006). Infants with NTDs experience 
both increased morbidity and mortality com-
pared with their unaffected contemporaries 
(Mitchell et  al. 2004; Wong and Paulozzi 
2001). Although these defects are clinically sig-
nificant, little is known about their etiology.

Hazardous air pollutants (HAPs), toxic 
substances commonly found in the air envi-
ronment, are known or suspected to cause 
serious health effects [U.S. Environmental 
Protection Agency (EPA) 2007a]. HAPs are a 
heterogeneous group of pollutants that include 
organic solvents such as benzene, toluene, eth-
ylbenzene, and xylene (BTEX) and are emit-
ted from several sources. Human exposure 
to HAPs can result from inhalation, inges-
tion, and dermal absorption. Benzene is one 
of the most prevalent HAPs in urban areas 
(Mohamed et al. 2002) and is of particular 
interest because it has been associated with 
several adverse health outcomes including 

pediatric cancer and intrauterine growth 
restriction [International Agency for Research 
on Cancer (IARC) 1982, 1987; Slama et al. 
2009; U.S. EPA 2007a; Whitworth et  al. 
2008; Yin et al. 1996].

Some studies have reported positive asso-
ciations between maternal exposures to air 
pollutants other than HAPs (i.e., criteria pol-
lutants) and birth defects, including ozone 
and certain cardiac defects (Gilboa et  al. 
2005; Ritz et al. 2002), ozone and oral clefts 
(Hwang and Jaakkola 2008), and particu-
late matter (PM) and nervous system defects 
(Rankin et  al. 2009). Other studies have 
been inconclusive regarding the role of crite-
ria pollutants on the prevalence of oral clefts 
(Hansen et al. 2009; Marshall et al. 2010) 
and congenital heart defects (Hansen et al. 
2009; Strickland et al. 2009).

Occupational studies have demonstrated 
a positive association between maternal expo-
sure to organic solvents (e.g., benzene) and 
birth defects, including NTDs (Brender et al. 
2002; McMartin et al. 1998; Wennborg et al. 
2005). Despite this association, no studies 
have assessed the effect of environmental 
levels of benzene or other HAPs on NTD 
prevalence. Therefore, we conducted a study 
to assess the association between maternal 

exposure to environmental levels of BTEX 
and the prevalence of NTDs in offspring. 
Benzene was the primary pollutant of interest 
because of its association with other adverse 
outcomes (IARC 1982; Whitworth et  al. 
2008). Toluene, ethylbenzene, and xylene 
were selected for investigation because of their 
association with benzene (Mohamed et al. 
2002). This study was conducted in Texas, 
a state that ranks number one in the United 
States for benzene levels in ambient air and 
accounts for 48% of all benzene emissions in 
the nation (U.S. EPA 2007b). 

Materials and Methods
Study population. Data on live births, still-
births, and electively terminated fetuses 
with NTDs (spina bifida and anenceph-
aly) delivered between 1 January 1999 and 
31 December 2004 were obtained from the 
Texas Birth Defects Registry (n = 1,108) 
(Texas Department of State Health Services 
2010). The registry is a population-based, 
active surveillance system that has monitored 
births, fetal deaths, and terminations through-
out the state since 1999. We selected a strati-
fied random sample of unaffected live births 
delivered in Texas between 1 January 1999 
and 31 December 2004 as the control group, 
using a ratio of four controls to one case. 
Controls were frequency matched to cases by 
year of birth because of the decreasing birth 
prevalence of NTDs over time (Canfield et al. 
2009a). This yielded a group of 4,132 con-
trols. The study protocol was reviewed and 
approved by the institutional review boards 
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Background: Previous studies have reported positive associations between maternal exposure to 
air pollutants and several adverse birth outcomes. However, there have been no studies assessing the 
association between environmental levels of hazardous air pollutants, such as benzene, and neural 
tube defects (NTDs), a common and serious group of congenital malformations.

Objective: Our goal was to conduct a case–control study assessing the association between ambient 
air levels of benzene, toluene, ethylbenzene, and xylene (BTEX) and the prevalence of NTDs among 
offspring.

Methods: The Texas Birth Defects Registry provided data on NTD cases (spina bifida and anen-
cephaly) delivered between 1999 and 2004. The control group was a random sample of unaffected 
live births, frequency matched to cases on year of birth. Census tract–level estimates of annual 
BTEX levels were obtained from the U.S. Environmental Protection Agency 1999 Assessment 
System for Population Exposure Nationwide. Restricted cubic splines were used in mixed-effects 
logistic regression models to determine associations between each pollutant and NTD phenotype.

Results: Mothers living in census tracts with the highest benzene levels were more likely to have off-
spring with spina bifida than were women living in census tracts with the lowest levels (odds ratio = 
2.30; 95% confidence interval, 1.22–4.33). No significant associations were observed between anen-
cephaly and benzene or between any of the NTD phenotypes and toluene, ethylbenzene, or xylene.

Conclusion: In the first study to assess the relationship between environmental levels of BTEX 
and NTDs, we found an association between benzene and spina bifida. Our results contribute to 
the growing body of evidence regarding air pollutant exposure and adverse birth outcomes.
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of the Texas Department of State Health 
Services and the University of Texas Health 
Science Center at Houston.

Exposure assessment. Census tract–level 
estimates of ambient BTEX levels were 
obtained from the U.S. EPA 1999 Assessment 
System for Population Exposure Nationwide 
(ASPEN) (Rosenbaum et  al. 1999; U.S. 
EPA 2006, 2008). The methods used for 
ASPEN have been described fully elsewhere 
(Rosenbaum et al. 1999; U.S. EPA 2006). 
Briefly, ASPEN is part of the National Air 
Toxic Assessment (Ozkaynak et al. 2008) and 
is based on the U.S. EPA Industrial Source 
Complex Long-Term Model. It takes into 
account emissions data, rate, location, and 
height of pollutant release; meteorological 
conditions; and the reactive decay, deposi-
tion, and transformation of pollutants. 
Ambient air levels of BTEX are reported as 

annual concentrations in micrograms per 
cubic meter (U.S. EPA 2006). Residential 
air levels of BTEX were estimated based on 
maternal address at delivery as reported on 
vital records for cases and controls. Addresses 
were geocoded and mapped to their respec-
tive census tracts by the Texas Department of 
State Health Services.

Potential confounders. Information on the 
following potential confounders was obtained 
or calculated from vital records data: sex of 
infant; year of birth; maternal race/ethnicity 
(non-Hispanic white, non-Hispanic black, 
Hispanic, or other); maternal birth place 
(United States, Mexico, or other); maternal 
age (< 20, 20–24, 25–29, 30–34, 35–39, or 
≥ 40 years); maternal education (less than 
high school, high school, or more than 
high school); marital status (married or not 
married); parity (0, 1, 2, or ≥ 3); maternal 

smoking (no or yes); and season of conception 
(spring, summer, fall, or winter). Additionally, 
as the exposure assessment for BTEX was 
based on census tract–level estimates, we 
opted to include a census tract–level estimate 
of socioeconomic status (percentage below 
poverty level), which was obtained from the 
U.S. Census 2000 Summary File 3 (U.S. 
Census Bureau 2010). Percentage of census 
tract below poverty level was categorized into 
quartiles (low, medium-low, medium-high, 
and high poverty level) on the basis of the 
distribution among the controls.

Statistical analysis. Frequency distribu-
tions for categorical variables were determined 
for controls and the two NTD subgroups 
(spina bifida and anencephaly). Correlations 
between levels of BTEX were determined 
using Spearman’s rank correlation. We used 
mixed-effects logistic regression to assess 
associations between each HAP and NTD 
phenotype while accounting for the potential 
within-group correlation resulting from the 
use of a census tract–level exposure assignment 
(Szklo and Nieto 2007). There is strong evi-
dence that risk factor profiles are different for 
spina bifida and anencephaly (Canfield et al. 
2009b; Khoury et al. 1982; Lupo et al. 2010b; 
Mitchell 2005); therefore, analyses were con-
ducted separately in these phenotypes.

Based on plots assessing the trend between 
benzene levels and NTD prevalence, the 
exposure–outcome relationship appeared 
nonlinear; therefore we opted to use restricted 
cubic splines. Specifically, restricted cubic 
splines were fit to logistic regression models 
assessing the association between each HAP 
and NTD phenotype. The output from these 
models indicated four knots (correspond-
ing to specific ambient HAP levels) where 
the exposure–outcome relationship changed. 
These knots were then used to determine cut 
points for low (i.e., reference), low-medium, 
medium, medium-high, and high ambient air 
levels (Durrleman and Simon 1989) and used 
in the final models assessing the association 
between each HAP and NTD phenotype. 
Because the low (i.e., reference) exposure 
category represents approximately 5% of the 
total population, we also defined the reference 
group as the 10th, 15th, and 20th percentile 
of exposure for each HAP, based on the dis-
tribution among controls, to assess how sensi-
tive the results were to the cut point chosen 
for the reference group.

Variables were incorporated as confound-
ers in the final models if inclusion resulted 
in ≥ 10% change in the estimate of effect 
between the air pollutant and NTD pheno
type. Year of birth was included in each 
multivariable model, because it was a match-
ing factor between cases and controls (Szklo 
and Nieto 2007). Associations between each 
HAP and NTD phenotype were considered 

Table 1. Characteristics of controls and NTD cases (spina bifida and anencephaly) in Texas, 1999–2004 
[n (%)].

Characteristic Controls (n = 3,695) Spina bifida (n = 533) Anencephaly (n = 303)
Sex of infant

Female 1,828 (49.5) 251 (47.3) 165 (54.8)
Male 1,867 (50.5) 280 (52.7) 136 (45.2)

Maternal race/ethnicity
Non-Hispanic white 1,344 (36.5) 191 (36.0) 89 (29.5)
Non-Hispanic black 430 (11.7) 54 (10.2) 30 (10.0)
Hispanic 1,773 (48.1) 280 (52.8) 176 (58.5)
Other 138 (3.7) 5 (0.9) 6 (2.0)

Maternal birthplace
United States 2,592 (70.4) 355 (67.4) 180 (62.5)
Mexico 785 (21.3) 145 (27.5) 93 (32.3)
Other 306 (8.3) 27 (5.1) 15 (5.2)

Maternal age (years)
< 20 501 (13.6) 76 (14.3) 57 (18.8)
20–24 1,099 (29.7) 158 (29.6) 93 (30.7)
25–29 966 (26.1) 141 (26.5) 78 (25.7)
30–34 754 (20.4) 119 (22.3) 58 (19.1)
35–39 323 (8.7) 31 (5.8) 13 (4.3)
≥ 40 52 (1.4) 8 (1.5) 4 (1.3)

Maternal education
< High school 1,155 (31.7) 188 (36.4) 107 (37.4)
High school 1,195 (32.8) 169 (32.7) 94 (32.9)
> High school 1,292 (35.5) 160 (30.9) 85 (29.7)

Marital status
Married 2,498 (67.7) 355 (67.1) 194 (64.2)
Not married 1,192 (32.3) 174 (32.9) 108 (35.8)

Parity
0 1,314 (36.9) 190 (37.7) 93 (31.9)
1 1,170 (32.9) 157 (31.2) 82 (28.1)
2 679 (19.1) 95 (18.8) 63 (21.6)
≥ 3 396 (11.1) 62 (12.3) 54 (18.5)

Maternal smoking
No 3,447 (93.9) 505 (95.5) 282 (95.3)
Yes 225 (6.1) 24 (4.5) 14 (4.7)

Census tract poverty levela
Low 922 (25.0) 100 (18.8) 56 (18.5)
Medium-low 925 (25.0) 144 (27.0) 82 (27.1)
Medium-high 926 (25.0) 137 (25.7) 81 (26.7)
High 922 (25.0) 152 (28.5) 84 (27.7)

Season of conception
Spring 807 (24.0) 106 (22.5) 59 (24.0)
Summer 798 (23.7) 127 (27.0) 56 (22.8)
Fall 876 (26.0) 122 (25.9) 72 (29.2)
Winter 887 (26.3) 116 (24.6) 59 (24.0)

aBased on percentage of census tract below the poverty level.
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significant when p < 0.05. To formally exam-
ine nonlinearity in the exposure–outcome 
relationship, a likelihood ratio test was used, 
comparing a full model (i.e., with both linear 
and cubic spline terms) to a reduced model 
(i.e., with a linear term only) at a significance 
level of p <  0.05 (Durrleman and Simon 
1989). All analyses were conducted using 
Intercooled Stata, version 10.1 (StataCorp 
LP, College Station, TX) or SAS version 9.2 
(SAS Institute Inc., Cary, NC).

Results
To minimize etiologic heterogeneity within 
the case group, cases with an associated chro-
mosomal abnormality or other syndrome 
(n = 75) and those with a closed NTD (i.e., 
lipomyelomeningocele, n = 88) were excluded. 
Additionally, cases with missing geocoded 
maternal address were excluded (n = 109). 
After these exclusions, 533 spina bifida and 
303 anencephaly cases were available for analy
sis. Of the 4,132 controls, 437 were excluded 
because of missing geocoded maternal address. 
The final control group consisted of 3,695 
unaffected births for analysis. The proportion 
of case and control mothers missing address 
information was similar (11.5% and 10.5%, 
respectively), and differences between those 
with and without maternal address at delivery 
were minor (≤ 5%) on demographic factors 
(results not shown). Compared with controls, 
case mothers were more likely to be Hispanic, 
born in Mexico, young, and less educated 
(Table 1).

Scatterplots of benzene and each of the 
other HAPs (toluene, ethylbenzene, and 
xylene) are presented in Figure 1. Levels of 
BTEX were highly and significantly corre-
lated (ρ̂ ≥ 0.97, p < 0.001) (data not shown). 
Because of the high correlation between these 
compounds, statistical models including mul-
tiple pollutants were not assessed.

Results from the final models assessing 
the associations between BTEX and NTDs 
are presented in Table 2. After adjusting for 
year of birth, maternal race/ethnicity, educa-
tion, census tract poverty level, and parity, 
mothers who lived in census tracts with the 
highest benzene levels were more likely to 
have offspring with spina bifida [odds ratio 
(OR) = 2.30; 95% confidence interval (CI), 
1.22–4.33]. The degree of confounding from 
all covariates was modest; that is, adjusted 
ORs differed from crude ORs by no more 
than 15%. There were also positive associa-
tions with the low-medium (OR = 1.77; 95% 
CI, 1.04–3.00), medium (OR = 1.90; 95% 
CI, 1.11–3.24), and medium-high benzene 
exposure groups (OR = 1.40; 95% CI, 0.82–
2.38). When the reference group was defined 
as less than or equal to the 10th, 15th, or 
20th percentile of exposure, the association 
between maternal residence in a census tract 

with the highest benzene levels relative to the 
referent group and the prevalence of spina 
bifida remained, although it was attenuated 
(OR10th = 1.96; 95% CI, 1.17–3.28; OR15th 
= 1.59; 95% CI, 1.00–2.54; and OR20th = 
1.57; 95% CI, 1.00–2.46).

Based on the likelihood ratio test between 
the adjusted model with cubic splines and the 
model without the spline terms, there was 
a significant nonlinear relationship between 
maternal benzene exposure and spina bifida 
prevalence (p = 0.03). To further illustrate 
the nonlinear trend between benzene and 

NTDs, the estimated logits (and 95% confi-
dence bands) were plotted against increasing 
benzene levels (Figure 2). For spina bifida, 
the logit appears to steadily increase when 
benzene levels are ≥ 3 μg/m3 and becomes 
statistically significant after benzene levels 
are approximately > 5 μg/m3 (Figure 2A), 
whereas no such trend was seen with anen-
cephaly (Figure 2B).

Discussion
We found a significant association between 
the prevalence of spina bifida in offspring and 

Figure 1. Scatterplots of (A) toluene and benzene, (B) ethylbenzene and benzene, and (C) xylene and benzene 
from the 1999 U.S. EPA ASPEN model for Texas census tracts included in the current analysis (n = 2,485).
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maternal exposure to ambient levels of ben-
zene as estimated from the 1999 U.S. EPA 
ASPEN model (U.S. EPA 2006). The asso-
ciation was greatest for those in the highest 
exposure group. Positive associations between 
benzene and spina bifida were also observed 
in lower exposure categories; however, there 
was no monotonic dose–response relationship. 
Our finding that the risk of having a spina 
bifida-affected infant more than doubled for 
mothers living in census tracts with estimated 
benzene levels of ≥ 3 μg/m3 is in keeping with 
a report classifying individuals living in areas 
with benzene levels > 3.4 μg/m3 as being at the 
greatest risk for adverse health effects (Sexton 
et al. 2007). There were also associations with 

toluene, ethylbenzene, and xylene and between 
BTEX and anencephaly; however, these asso-
ciations were not statistically significant.

The association between benzene levels 
and spina bifida appears to be nonlinear. This 
is supported by studies reporting nonlinear 
associations between personal exposure to 
benzene and various biomarkers (i.e., urinary 
metabolites and albumin adducts) of exposure 
using data collected on occupationally and 
environmentally exposed individuals, whereby 
exposure-metabolite curves became steeper at 
higher exposure levels (Kim et al. 2006; Lin 
et al. 2007).

Despite the strong correlations between the 
BTEX compounds, a significant association 

with spina bifida was seen only with benzene. 
Scatterplots of benzene and each of the other 
HAPs (toluene, ethylbenzene, and xylene) 
indicate that the correlations between pollut-
ants are not as great at higher levels (Figure 1). 
In addition, we found lower correlations 
between benzene and the other pollutants 
(toluene, ethylbenzene, and xylene) when we 
restricted the analyses to census tracts with 
the highest benzene levels (n = 119) (ρ̂ = 0.62, 
0.71, and 0.77, respectively).

Benzene is known to cross the placenta 
and has been found in cord blood at lev-
els equal to or higher than maternal blood 
[Agency for Toxic Substances and Disease 
Registry (ATSDR) 2007]. Moreover, ben-
zene can lead to genetic toxicity by covalently 
binding to DNA and forming DNA adducts, 
which, if not repaired, disrupt the micro
environment of the cell, leading to inhibition 
of important enzymes, cell death, and altera-
tion of other cells (ATSDR 2007; Kim et al. 
2006; Lan et al. 2004). If this occurs during 
the critical window of development, the com-
plex cellular processes involved in neurulation 
(e.g., folate metabolism, cell proliferation, 
cellular adhesion, and vascular development) 
may be disturbed, resulting in NTDs.

Oxidative stress could also play a role in the 
teratogenic effect of benzene. Reactive oxygen 
species (ROS) formed after benzene exposure 
lead to DNA strand breakage and fragmenta-
tion leading to cell mutation (Hansen 2006; 
Xia et al. 2004). The importance of oxidative 
stress as a mechanism of teratogenesis is sug-
gested by several animal studies (Fantel 1996). 
Treatment of pregnant rabbits and mice with 
ROS inhibitors diminished the effect of terato-
gens and reduced the amount of DNA oxida-
tion (Liu and Wells 1995; Parman et al. 1999; 
Wells et al. 1997). One study conducted in 
rats demonstrated that increased embryonic 
oxidation resulted in failure of neural tube clo-
sure (Morriss and New 1979).

Positive associations between maternal 
occupational exposures to organic solvents and 
congenital malformations have been reported. 
One study assessing maternal occupational 
exposure to benzene reported an OR of 5.3 
(95% CI, 1.4–21.1) for neural crest mal-
formations (including NTDs) (Wennborg 
et  al. 2005). In addition, among Mexican 
Americans, mothers occupationally exposed 
to solvents were 2.5 times as likely (95% CI, 
1.3–4.7) to have NTD-affected pregnancies 
than control mothers (Brender et al. 2002). In 
a meta-analysis of five studies (not including 
the two previously discussed), mothers who 
were occupationally exposed to organic sol-
vents had 1.6 times greater odds (95% CI, 
1.2–2.3) of having an infant with a birth defect 
(including NTDs) (McMartin et al. 1998).

A potential limitation of this study is 
related to the exposure assessment, which 

Table 2. Adjusted ORs (95% CIs) for the associations between 1999 U.S. EPA ASPEN modeled estimates 
of BTEX and NTDs in Texas, 1999–2004. 

Spina bifida Anencephaly

Pollutant

Pollutant 
level [µg/m3 

(range)]

Cases/
controls 

(n)
Adjusted ORa,b 

(95% CI)
Pollutant level 
[µg/m3 (range)]

Cases/
controls 

(n)
Adjusted ORb,c 

(95% CI)
Benzene

Low (reference) 0.12–0.45 19/195 1.00 0.12–0.44 13/186 1.00
Medium-low > 0.45–0.98 174/1,093 1.77 (1.04–3.00) > 0.44–0.98 92/1,106 1.36 (0.71–2.59)
Medium > 0.98–1.52 167/1,100 1.90 (1.11–3.24) > 0.98–1.52 98/1,103 1.49 (0.78–2.83)
Medium-high > 1.52–2.86 138/1,130 1.40 (0.82–2.38) > 1.52–2.81 86/1,115 1.24 (0.65–2.37)
High > 2.86–7.44 35/177 2.30 (1.22–4.33) > 2.81–7.44 14/185 1.28 (0.56–2.89)

Toluene
Low (reference) 0.01–0.31 20/191 1.00 0.01–0.30 14/186 1.00
Medium-low > 0.31–1.50 179/1,089 1.56 (0.95–2.58) > 0.30–1.53 89/1,115 1.33 (0.70–2.54)
Medium > 1.50–2.84 161/1,107 1.43 (0.87–2.37) > 1.53–2.85 97/1,096 1.49 (0.78–2.84)
Medium-high > 2.84–5.96 146/1,125 1.31 (0.79–2.18) > 2.85–5.90 90/1,113 1.31 (0.69–2.51)
High > 5.96–14.3 27/183 1.46 (0.78–2.75) > 5.90–14.3 13/185 1.19 (0.52–2.72)

Ethylbenzene
Low (reference) 0.01–0.04 21/190 1.00 0.01–0.04 15/183 1.00
Medium-low > 0.05–0.25 178/1,089 1.46 (0.89–2.38) > 0.04–0.25 91/1,109 1.23 (0.66–2.30)
Medium > 0.26–0.51 161/1,110 1.36 (0.83–2.23) > 0.25–0.51 98/1,103 1.34 (0.72–2.50)
Medium-high > 0.52–1.10 140/1,130 1.18 (0.72–1.94) > 0.51–1.08 88/1,112 1.17 (0.63–2.19)
High > 1.11–2.74 33/176 1.72 (0.94–3.15) > 1.08–2.74 11/188 0.90 (0.38–2.07)

Xylene
Low (reference) 0.18–0.36 21/190 1.00 0.18–0.36 14/183 1.00
Medium-low > 0.36–1.10 177/1,092 1.45 (0.88–2.36) > 0.36–1.12 92/1,110 1.35 (0.70–2.58)
Medium > 1.10–1.96 164/1,100 1.39 (0.85–2.27) > 1.12–1.97 91/1,107 1.36 (0.71–2.60)
Medium-high > 1.96–3.90 140/1,133 1.18 (0.72–1.94) > 1.97–3.86 92/1,110 1.32 (0.69–2.52)
High > 3.90–8.84 31/180 1.64 (0.90–3.01) > 3.86–8.84 14/185 1.26 (0.56–2.85)

aAdjusted for year of birth, maternal race/ethnicity, and parity. (Model for benzene also included percentage of cen-
sus tract below poverty level and maternal education.) bEstimates from mixed-effects logistic regression models that 
account for group effects at the census tract level. cAdjusted for year of birth, sex of infant, and season of conception.

Figure 2. Restricted cubic splines representing the relationship between (A) benzene and the odds of spina 
bifida and (B) benzene and the odds of anencephaly. (Reference group is the lowest benzene exposure 
level; dashed lines represent 95% CIs.) 
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relied on modeled predictions of ambient 
air levels of BTEX (i.e., the ASPEN model) 
and may have resulted in misclassification. 
Personal exposure is a function of outdoor 
and indoor pollutant levels, as well as indi-
vidual behavior (i.e., time spent outdoors vs. 
indoors) (Lee et al. 2004). However, it has 
been shown that for benzene, the ASPEN 
model is a good surrogate for exposure meas
ures based on personal monitoring (Payne-
Sturges et al. 2004). The fact that ASPEN 
data were available only for 1999 and not 
for the entire study period is an additional 
potential limitation. This may be a suitable 
surrogate for other years, because the sources 
of HAPs (e.g., emissions from roadways and 
industrial facilities) were unlikely to change 
during the study period (Grant et al. 2007; 
Sexton et al. 2007; Whitworth et al. 2008). 
Additionally, information on maternal peri-
conceptional use of folic acid and/or multi-
vitamins (a potential confounder) was not 
available. However, this population represents 
pregnancies conceived after mandatory folic 
acid fortification (January 1998), and a recent 
study found little evidence of an association 
between NTDs and maternal folic acid intake 
or multivitamin use since fortification (Mosley 
et al. 2009). Finally, exposure misclassifica-
tion due to use of maternal address at time 
of delivery is also a potential source of bias 
in this study. Because NTDs develop within 
the first 4 weeks after conception, address at 
delivery may be different than address dur-
ing the critical window of exposure (Selevan 
et al. 2000). However, our own analyses using 
cases and controls from Texas included in 
the National Birth Defects Prevention Study, 
with complete residential information dur-
ing pregnancy, suggest there was no signifi-
cant change in benzene exposure assignment 
when using address at delivery versus address 
at conception (Lupo et al. 2010a).

Strengths of this study include the use 
of a population-based birth defects registry 
that employs an active surveillance system to 
ascertain cases throughout the state of Texas. 
This should limit the potential for selection 
bias. Furthermore, the Texas Birth Defects 
Registry includes information on pregnancy 
terminations, reducing any potential bias due 
to the exclusion of these cases. An additional 
strength was the use of a relatively small (cen-
sus tract–level) measure of exposure. Using 
larger geographic units to estimate exposure 
(e.g., counties) may not capture the spatial 
variability of benzene (Pratt et  al. 2004). 
Furthermore, separate analyses were con-
ducted for spina bifida and anencephaly, 
as opposed to combining the groups into a 
single phenotype. This is important, as the 
effects of some exposures appear to be hetero-
geneous across the subtypes of NTDs (Lupo 
et al. 2010b; Mitchell 2005).

Conclusions
This study provides the first assessment of the 
relationship between maternal exposure to 
ambient levels of BTEX and the prevalence of 
NTDs in offspring. Our analyses suggest that 
maternal exposure to ambient levels of benzene 
is associated with the prevalence of spina bifida 
among offspring. We believe that future inves-
tigations of air pollutants and NTDs should 
include additional measures of exposure (e.g., 
air pollutant monitoring and biomarker data) 
and additional covariate information (e.g., 
genotypes and nutrient status).
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